Semidefinite Programming Part 2

نویسندگان

  • Sushant Sachdeva
  • Alex Reinking
چکیده

2. Max-Cut Revisited As in last week’s lecture, we approximate solutions to Max-Cut using Goemans’s and Williamson’s αGW = 0.878-approximation. Specifically, we seek max ∑ (i,j)∈E 1 4 ∥∥vi − vj∥∥2 subject to the constraint that ∀i, ‖vi‖ = 1. We can visualize this by drawing the vectors restricted to a unit circle, as seen in the figure to the left. There is an appealing geometric intuition here. When seen as assignments of unit vectors to vertices, it becomes clear that you want them somehow as far apart as possible.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Recurrent Neural Network Model for Solving Linear Semidefinite Programming

In this paper we solve a wide rang of Semidefinite Programming (SDP) Problem by using Recurrent Neural Networks (RNNs). SDP is an important numerical tool for analysis and synthesis in systems and control theory. First we reformulate the problem to a linear programming problem, second we reformulate it to a first order system of ordinary differential equations. Then a recurrent neural network...

متن کامل

Semidefinite programming — an introduction

Interior point methods can be extended to a number of cones (self-dual homogeneous cones) • Rn (linear programming) • vectorized symmetric matrices over real numbers (semidefinite programming) • vectorized Hermitian matrices over complex numbers • vectorized Hermitian matrices over quaternions • vectorized Hermitian 3×3 matrices over octonions Grötschel, Lovász and Schrijver [3]: semidefinite p...

متن کامل

A path following interior-point algorithm for semidefinite optimization problem based on new kernel function

In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...

متن کامل

A path-following infeasible interior-point algorithm for semidefinite programming

We present a new algorithm obtained by changing the search directions in the algorithm given in [8]. This algorithm is based on a new technique for finding the search direction and the strategy of the central path. At each iteration, we use only the full Nesterov-Todd (NT)step. Moreover, we obtain the currently best known iteration bound for the infeasible interior-point algorithms with full NT...

متن کامل

Implementation of nonsymmetric interior-point methods for linear optimization over sparse matrix cones

We describe an implementation of nonsymmetric interior-point methods for linear cone programs defined by two types of matrix cones: the cone of positive semidefinite matrices with a given chordal sparsity pattern and its dual cone, the cone of chordal sparse matrices that have a positive semidefinite completion. The implementation takes advantage of fast recursive algorithms for evaluating the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015